Preliminary Studies of Isozyme Patterns of Isolates of Colletotrichum gloeosporioides from Host Plants in Malaysia

VIJAYA. S. KANAPATHIPILLAI

Department of Biology,
Universiti Pertanian Malaysia,
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

Keywords: Colletotrichum gloeosporioides, isozymes, Malaysian host plants

ABSTRAK

Variasi isozim pada 25 isolat Colletotrichum gloeosporioides daripada 12 perumah tumbuhan di Malaysia telah dikaji menggunakan polyacrylamide gel elektroforesis. Perumah-perumah tersebut termasuk tujuh jenis daripada legum, dan hanya satu jenis daripada citrus, rumput, koko, lada hitam dan cili. Satu hingga lima elektromorph telah dihasilkan oleh setiap enzim pada lima sistem enzim yang dikaji. Ada juga isolat yang tidak menghasilkan sebarang jalur. Dua jalur dan jalur multipel dapat diperhatikan pada esterase, MDH, GLDH dan LDH. Hanya isolat lada hitam menghasilkan satu jalur pada GDH. Terdapatnya variasi pada corak jalur esterase dan MDH pada isolat-isolat daripada perumah yang berlainan. Kajian isozim berkemungkinan dapat digunakan untuk mengenalpasti C. gloeosporioides daripada perumah yang berlainan apabila lebih banyak sampel dikaji di masa yang akan datang.

ABSTRACT

Isozyme variation of 25 isolates of Colletotrichum gloeosporioides from 12 different Malaysian host plants were studied using polyacrylamide gel electrophoresis. The hosts included seven species of legumes and one species each of citrus, grass, cocoa, pepper and chilli. One to five electromorphs per enzyme were produced for the five enzyme systems typed. Some isolates did not produce any bands for the enzymes studied. Double to multiple bands were observed with esterases, MDH, GLDH and LDH. Only one pepper isolate produced a single band for GDH. Some variations among the isolates of different host plants were observed with the isozyme patterns of esterases and MDH. Isozyme tests may prove to be a useful tool in the identification of C. gloeosporioides of different host plants when more samples are tested in future.

INTRODUCTION

The taxonomy of *Colletotrichum* is based mainly on conidial morphology and size (Arx, 1957; Sutton, 1980). Several host specific forms exist among the species of *Colletotrichum* which make delimitation of the species difficult. Anthracnose disease caused by *Colletotrichum gloeosporioides* is widespread and damaging to many varieties of hosts. *C. gloeosporioides* is characterised by straight conidia with rounded or at times pointed ends, ranging 12-19 mm long (Arx, 1957) and 5-35 mm long (Davies *et al.*, 1992). The conidia are normally produced on conidionematous phialides within an acervulus. Some isolates of *C.*

gloeosporioides exhibit presence of setae on the acervulus. Conidia can also be produced directly from the hyphae. Other straight-spored producing species of Colletotrichum are C. musae, and C. crassipes. Conidial size and shape alone are inadequate to categorize C. gloeosporioides. Electrophoretic studies have been used over the past few decades to analyse the variation among the physiological races (Gill and Powell, 1968) and the virulence in natural populations (Lenne and Burdon, 1990) of various fungi. The aim of this study was to investigate whether there is any isozyme difference existing among isolates of C. gloeosporioides isolated from some Malaysian host plants.

MATERIALS AND METHODS

Twenty five isolates of C. gloeosporioides were isolated from 12 host plants (Table 1). Isolates studied included two from Citrus reticulata (mandarin orange), three from Piper nigrum (pepper), two from Capsicum frutescens (chilli pepper), three from Imperata cylindrica (a grass), one from Vigna radiata (mung bean), two from Theobroma cacao (cocoa), four from Centrosema pubescens (a legume), one from Pueraria phaseoloides (a legume), one from Calopogonium mucunoides (leguminous cover crop), two from Phaseolus vulgaris (French bean), one from Clitoria ternatea (butterfly pea) and three from Psophocarpus tetragonolobus (winged bean). All monospored cultures were maintained on Potato Dextrose Agar (PDA).

Polyacrylamide Gel Electrophoresis

Discs 3 mm in diameter from each of the fungal isolates were transferred into McCartney bottles containing Malt extract broth. The cultures were

then incubated for 10 days in the dark to enhance mycelial growth versus spore production. The mycelia were then harvested by washing five times with sterile distilled water, filtering through muslin cloth, blotting dry and freezing at about -20°C. The mycelia were then ground with a drop from a pasteur pipette of extraction buffer pH 8.0 (0.05 M Trizma base, 0.1 mM b-Nicotinamide Adenine Dinucleotide (NAD), 0.01M Glycyl glycine, 0.01M CaCl2 and 0.01 mM b-Nicotinamide Adenine Dinucleotode Phosphate (NADP) in 1 l distilled water. Small strips of filter paper (1 x 2 mm) Whatman no. 17 were soaked in each of the ground mycelial fluids, then placed on the base of polyacrylamide gel pH 7.2, 2.0 mm thick, 19 x 19 cm L/W. A marker, Bromophenol Blue, was used on either side of the gel. The gel was allowed to run on horizontal gel electrophoretic system with the Tris-citric acid electrode buffer pH 6.9 (0.135 M Trisma base and 0.040 M citric acid) at a constant current at 50 mA until the buffer front reached

TABLE 1
Isolate number from host plants of Colletotrichum gloeosporioides

Isolate number	Host Host	es situationalists (mas)	
Imp. 18 (ii)	Imperata cylindrica		
Imp. 18 (i)	Imperata cylindrica	Gramineae	
Imp. C 012.2	Imperata cylindrica	Gramineae	
CM	Citrus reticulata	Rutaceae	
CM002	Citrus reticulata	Ruidcede	
Pip B 001	Piper nigrum	Piperaceae	
Pip B 004	Piper nigrum	Piperaceae	
Pip B oo5	Piper nigrum	Piperaceae	
Cp 011	Theobroma cacao	Sterculiaceae	
Cp 013	Theobroma cacao	Sterculiaceae	
Chi 003	Capsicum frutescens	Solanaceae	
Chi 005	Capsicum frutescens	Solanaceae	
Peu B	Pueraria phaseoloides	Leguminosae	
32 Khst 1.3	Vigna radiata	Leguminosae	
CI 003	Clitoria ternatea	Leguminosae	
Cent st	Centrosema pubescens	Leguminosae	
27 Cent B 1.3	Centrosema pubescens	Leguminosae	
2 Kb f 1.5	Psophocarpus tetragonolobus	Leguminosae	
4 Kb L1.3	Psophocarpus tetragonolobus	Leguminosae	
Pt 004	Psophocarpus tetragonolobus	Leguminosae	
PV 001	Phaseolus vulgaris		
CAF	Calopogonium mucunoides	Leguminosae	

the respective stains (Harris and Hopkinson, 1976) for each of the isozymes tested. The isozymes tested were esterase (Est), lactate dehydrogenase (LDH), glucose dehydrogenase (GDH), glutamate dehydrogenase (GLDH) and malate dehydrogenase (MDH).

RESULTS AND DISCUSSION

The isozyme patterns or the electromorphs of the 5 enzyme systems found in 25 isolates of C. gloeosporioides are given in Fig. 1 and the isozyme phenotypes of isolates from 12 host species are given in Table 2. The positions of the bands in Fig. 1 are based on the migration distance on the gel and the Rf values calculated. One to five isozyme patterns occurred per enzyme with a total of twelve for the five enzymes (Fig. 1). For esterase and malate dehydrogenase both single and multi-banded patterns were found among the isolates. Glucose dehydrogenase showed a single-banded pattern, glutamate dehydrogenase produced a double banded pattern while lactate dehydrogenase produced a three-banded pattern. Single banded

about 11 cm. The gels were then stained with phenotypes wherever produced may be controlled by a single gene. Isozyme data are interpreted conservatively, considering only the banding phenotypes where each banding pattern per enzyme and isolate was determined as a single electromorph.

> GLDH showed the two-banded isozyme profile for the C. gloeosporioides of the winged bean only and no profile for any of the other 24 isolates studied. GDH showed the one-banded isozyme profile for a pepper isolate only. For LDH, 13 out of 25 isolates produced a threebanded isozyme profile. The 13 isolates were from unrelated species of host plants. The banding pattern can be said to be homogenous and therefore LDH was not a good marker. Dehydrogenases are difficult to stain and resolve.

> Fifty percent of the isolates tested gave four types of banding patterns when stained for MDH. The band pattern 1 with 4 bands was shown by seven isolates namely, two of pepper, two from Centrosema, two from French bean and one from winged bean. The pattern 2 with 3 bands for MDH was shown only by the three isolates of grass. The single-band pattern 3 was produced

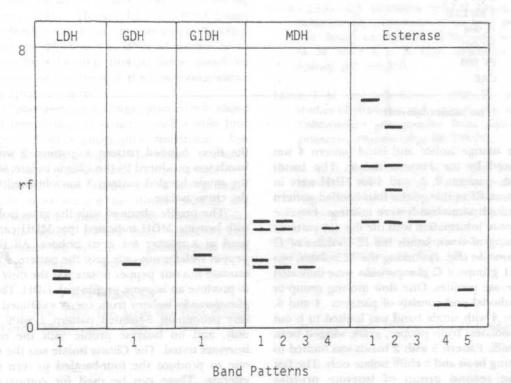


Fig. 1: Isozyme patterns for five enzyme systems from Colletotrichum gloeosporioides from host plants in Malaysia to only four helicia. The entry unlitted produced one to produce the engineer for engineer for the produce.

VIJAYA, S. KANAPATHIPILLAI

TABLE 2

Isozyme phenotypes of isolates of Colletotrichum gloeosporioides

Isolate number	EST	GDH	GLDH	LDH	MDH
Imp. 18 (ii)	day segundar		Hermatel(L(n))	et dippende	9
Imp. 18 (i)	diwinds Hi	- 4		HEGE -	2
Imp. C 012.2	4			and the same	2
CM	greg our boot of 46 de les la colonia	-	NOR		- 3
	3		alimentary and		
Pip B 001	4	in the second	Anagarotatel No. 2 and Stor		-
Pip B 004		1	annaems ge	1	1
Pip B 005			losens ledges		
Cp 011			aiditive affect of do		
Cp 013	literal 1		distribution in		
Chi 003	4	u chair	male of the same		
Chi 005	5	of d	19 79 11	Library Loads	app. meb
A COLL AN	MEDINE I		looke or	10 10 7	4
	5		n frankerine	La Serrie 1	of Dist
C1 003	2				anditat
Cent st	-	- 110	in the graphs		
25 Cent st 1.3		100	holiga bas		
Cent et a	arinesiya ni			· magni alli	
27 Cent B 1.3	-		Single Minne	1	1
2 Kb f 1.5	-	3.2		1	4
4 Kb L1.3			1	1	1
Pt 004	4	100			
PV 001				1	1
PV 003				1	1
CAF				1	

(- no bands observed)

by the orange isolate and band pattern 4 was produced by the Pueraria isolate. The bands seen in patterns 2, 3 and 4 for MDH were in the same Rf as that of the four-banded pattern 1, although some bands were missing. Esterase gave more information with the five (5) patterns consisting of seven bands for 12 isolates of C. gloeosporioides (Fig. 1). Among the 12 isolates, two distinct groups of C. gloeosporioides were indicated by esterase profiles. One slow moving group at the cathodal end consists of patterns 4 and 5. Pattern 4 with single band was limited to 6 out of 12 isolates from pepper, grass, winged bean and chilli. Pattern 5 with 2 bands was limited to the mung bean and a chilli isolate only. The fast moving second group of isozyme profiles consisted of patterns 1, 2 and 3 and was limited to only four isolates. The cocoa isolates produced

the three banded pattern 1; pattern 2 with 4 bands was produced by the *Clitoria* isolate; while the single banded pattern 3 was obtained with the citrus isolate.

The profile obtained with the grass isolates with isozyme MDH indicated that MDH can be used as a marker for grass isolates. All three pepper isolates not only gave the pattern 4 with esterase but one pepper isolate was the only one to produce an isozyme profile with GDH. The C. gloeosporioides isolates from cocoa exhibited the very prominant 3-banded pattern 1 with EST only, and no isozyme profile with the other isozymes tested. The Clitoria isolate was the only one to produce the four-banded pattern with esterase. These can be used for comparative purposes. The citrus isolate CM002 was the only one to produce the one-banded, Rf 0.318, pattern

3, with esterase while the other isolate CM was the only one to produce the single banded pattern 3 with MDH at Rf 0.173.

Considerable variations in phenotype exist among the isolates of *C. gloeosporioides* from different host plants. The *C. gloeosporioides* from different hosts exhibited some variation in the isozyme patterns, especially when typed for esterase and malate dehydrogenase. Some specific patterns were also seen especially for MDH for the grass isolates, esterase and GDH for pepper, esterase for cocoa isolates, esterase for *Clitoria* and esterase and MDH for citrus isolates.

In studies on many isolates of the anthracnose pathogen C. gloeosporioides of Stylosanthes guianensis, the fungus was reported to belong to two groups on the basis of the conidial morphology, disease symptoms, host range and virulence on certain cultivars (Irwin et al., 1984), on their double stranded RNA (Dale et al., 1988) and by electrophoretic karyotype (Masel et al., 1990). Lenne and Burdon (1990) showed considerable phenotypic variation within five natural populations of C. gloeosporioides collected from S. guianensis and correlated sexual reproduction to the variation that exists among the population. Hodson et al. (1993) found considerable variation in restriction banding pattern in rDNA and mtDNA of species of C. gloeosporioides isolates, though none could be distinguished in relation to the host source within geographic localities.

C. gloeosporioides is a large group which shows great morphological variation with a wide host range and wide geographic distribution but cannot be easily grouped. The sample size used in this study was too small to make any firm conclusions. Thus, further work using larger sample sizes should be done. Studies are underway to determine whether esterase alone from the spores (rather than mycelia) can differentiate the isolates of C. gloeosporioides from different host plants more clearly.

REFERENCES

ARX, J. A. VON. 1957. Die Arten der Colletotrichum Corda. Phytopathology Z. 29: 413-468.

- DALE, J. L., J. M. MANNERS and J.A.G. IRWIN. 1988. Colletotrichum gloeosporioides isolates causing different anthracnose diseases on Stylosanthes in Australia carry distinct double-stranded RNA's. Transactions British Mycological Society 91: 671- 676.
- Davies, R. D., R.M. Boland and C.J. Howitt. 1992.
 Colony descriptions, conidium morphology, and the effect of temperature on colony growth of Colletotrichum gloeosporioides isolated from Stylosanthes spp. growing in several countries. Mycological Research 96: 128-134.
- Gill, H. S and P. Dwight. 1968. Polyacrylamide gel (Disc) electrophoresis of physiologic races of Phytophthora fragariae. Phytopathology 68: 722-723.
- HARRIS, H and D.A. HOPKINSON. 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North
 Holland Publishing Company, Amsterdam.
- Hodson, A., P. R. Mills and A. E. Brown. 1993. Ribosomal and mitochondria DNA polymorphisms in Colletotrichum gloeosporioides isolated from tropical fruits. Mycological Research 97: 329-335.
- IRWIN, J.A.G., D.F. CAMEROON and J.M. LENNE. 1984.
 Response of Stylosanthes to anthracnose. In:
 The Biology and Agronomy of Stylosanthes. (eds.)
 H. M. Stace & L. A. Edye. Acadamic Press,
 Sydney. pp 295-310.
- LENNE, J. M. and J. J. Burdon. 1990. Preliminary studies of virulence and isozymic variation of Colletotrichum gloeosporioides from Stylosanthes guianensis. Phytopathology 80: 728-731.
- MASEL, A., K. BRAITHWAITE, J. A. G. IRWIN and J.M. MANNERS. 1990. Highly variable molecular karyotypes in the plant pathogen Colletotrichum gloeosporioides. Current Genetics 18: 81-86.
- Sutton, B.C. 1980 *The Coelomycetes*. Commonwealth Mycological Institute, Kew, UK.

(Received 5 June 1995; accepted 31 October 1995)